Rachel Narehood Austin

Diana T. and P. Roy Vagelos Professor of Chemistry

Chair Department of Chemistry

Rachel Narehood Austin is the Diana T. and P. Roy Vagelos Professor of Chemistry in the Department of Chemistry at Barnard College in NYC. She joined the faculty in 2015 after 20 years on the faculty at Bates College in Lewiston ME. Her laboratory has a longstanding interest in understanding the mechanisms of metalloproteins, especially those important in the global cycling of elements and neurochemistry, and developing and characterizing heterogeneous catalysts that can be used for green chemistry, biofuels upgrading, or environmental remediation. A major emphasis of her current research is the development of a detailed picture of both the structures and mechanisms of the metalloenzymes that have evolved to catalyze the oxidation of alkanes. Funding for her lab has been received from NSF, NIH, HHMI, the Merck/AAAS research fund, Pfizer, DOE, and the Dreyfus Foundation in the form of a Henry Dreyfus Teacher Scholar Award. She is the past chair (together with co-Chair Ariel Anbar) of the 2010 Environmental Bioinorganic Chemistry Gordon Research Conference and a current editorial board member of the journals Metallomics and the Journal of Inorganic Biochemistry and a reviewing editor for the journal Frontiers in Microbiological Chemistry.

Academic Focus: 

Environmental Bioinorganic Chemistry C-H and C-O bond activation Inorganic neurochemistry


Chemical Problem Solving , Chem I, Chemistry IV Chemistry I Advanced Spectroscopy Laboratory Undergraduate Research Opportunities

Awards & Honors: 


Professional Affiliations: 

Advisory Board, Metallomics
Editorial board member Journal of Inorganic Biochemistry
Editorial review board Frontiers in Microbiological Chemistry
Member Graduate Faculty, University of Maine Orono
Standing member NIH “Macromolecular structure and function A” study section, June 2006-2008
U.S. and Canadian Representative for the French National Center for the Popularization of Knowledge – 1997-1999

Presentations / Recent Lectures: 

RECENT INVITED LECTURES Bridging scales: A molecular perspective on selected problems in environmental (bio) inorganic chemistry, Columbia University Department of Chemistry, October 2015. Bridging scales: A molecular perspective on selected problems in environmental (bio) inorganic chemistry, Brooklyn College Department of Chemistry, October 2015. Alkane oxidizing enzymes in the marine environment: What we can learn from integrating biochemistry, microbiology, and –omic data bases. CanBic, Parry Sound, May 2015. Alkane oxidizing enzymes: What can we learn from integrating biochemistry, microbiology, and –omic data bases? Bigelow Laboratory for Ocean Sciences, Boothbay Harbor, ME March 2015. From the molecular to the global: Alkane Oxidation in oil-impacted environments White Research Group, Haverford College July 2014. Structure and function of alkane monooxygenase (AlkB) Groves Research Group, Princeton University, July 2014. From the molecular to the global: Alkane Oxidation in oil-impacted environments Barnard College, April 30, 2014. What is the relationship between the structure and function of alkane monooxygenase (AlkB)? Rosenzweig Research Group, Northwestern University, November 2013. Lead-binding to metallothionein ACS meeting, San Diego, CA March 25-29, 2012. From the molecular to the global: Alkane Oxidation in oil-impacted environments ACS meeting, San Diego, CA March 25-29, 2012. Exploring the biochemical basis of lead’s developmental effects on children University of New England School of Pharmacy March 10, 2012. Oil spills, Dead Zones, and Environmental Alkane Oxidation University of North Carolina Greensboro, September 23, 2011. Oil spills, Dead Zones, and Environmental Alkane Oxidation New England Chemistry Teachers Association Annual Meeting, August 1-4, 2011. A bioinorganic perspective on alkane oxidation College of Rhode Island, December 3 2010. Recent advances in understanding the reaction mechanism of alkane hydroxylase (AlkB), a key metalloenzyme in the carbon cycle Penn State Frontiers of Metallobiochemistry June 2-5 2010.


Lead neurotoxicity: Exploring the potential impact of lead substitution in zinc-finger proteins on metal health Jacqueline M. Ordemann and Rachel N. Austin, Metallomics, 2016, DOI: 10.1039/C5MT00300H

Thermodynamics of Pb(II) and Zn(II) binding to MT-3, a neurologically important metallothionein Molly Carpenter, Adnan Shami Shah, Sachith DeSilva, Astrid Gleaton, Angela Su, Ben Goundie, Molly Croteau, Michael Stevenson, Dean E. Wilcox, Rachel N. Austin, Metallomics, 2015, DOI: 10.1039/c5mt00209e.

Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2 Ryan Nelson, Byeongjin Baek, Pamela Ruiz, Ben Goundie, Ashley Brooks, M. Clayton Wheeler, Brian G. Frederick, Lars C. Grabow, Rachel Narehood Austin, ACS Catalysis 2015, 11, 6509-6523.

Protocols for purifying and characterizing integral membrane AlkB enzymes Rachel Narehood Austin, David Born, Thomas J. Lawton, and Grace E. Hamilton Hydrocarbon and Lipid Microbiology Protocols, 2015.

Editorial “Metallomics: Metals in Marine Biochemistry” Rachel Narehood Austin and Mak Saito Metallomics 2014, 6. 1121-1125 Guest Editor of special issue.

What is known, and not known, about alkane oxidation and metal uptake in Alkanotrophs in the marine environment? Rachel Narehood Austin, Grace E. Kenney, Amy C. Rosenzweig, Metallomics 2014, 6, 1121-1125 DOI:10.1039/C4MT00041B pub med id 24710692

Effects of support identify and metal dispersion in supported ruthenium hydrodeoxygenation catalysts Cody Newman, Xiaobo Zhou, Ben Goundie, I. Tyrone Ghampson, Rachel A Pollock, Zachery Ross, M. Clayton Wheeler, Robert W. Meulenberg, Rachel N Austin, Brian G. Frederick, Applied Catalysis A 2014, 477, 64-74.

Microbial enzymes that oxidize hydrocarbons Rachel N. Austin and Amy V. Callaghan, Front. Microbiol. (Microbiological Chemistry) 2013 (ebook as well) Guest Editor of Special Issue, which was a top 10 Frontiers ebook in 2014).

Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents Rachel Narehood Austin, Erin M. Bertrand, John T Groves, Costantino Vetriani, Ramaydalis Keddis, Front. Microbiol. (Microbiological Chemistry) 2013, 4:109.

Substrate specificity and reaction mechanism of purified alkane hydroxylase (AlkB) from the hydrocarbonoclastus bacterium Alcanivorax borkumensis Swe-Htet Naing, Saba Parvez, Marilla Pender-Cudlip, John T. Groves, Rachel N. Austin, Journal of Inorganic Biochemistry, 2013, 121, 46-52.

Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation, and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB Harriet L. R. Cooper, Girish Mishra, Xiongyi Huang, Marilla Pender-Cudlip, Rachel N. Austin, John Shanklin and John T. Groves J. Am. Chem. Soc. 2012, 134, 20365–20375.

Editorial “Metallomics: emerging investigators” Rachel Narehood Austin Metallomics 2012, 4, 863-865. Guest Editor of Special Issue.

Guaiacol hydrodeoxygenation on MoS2 catalysts: Influence of activated carbon support. P. E. Ruiz, B. G. Frederick, W. J. DeSisto, R. N. Austin, L. R. Radovic, K. Leiva, R. Garcia, N. Escalona, M. C. Wheeler, Catalyst Communications 2012, 27, 44-48.

Genome Sequence of Desulfatibacillum alkenovorans AK-O1: The Blueprint for Anaerobic Alkane Oxidation A. V. Callaghan, B. E. L. Morris, I. A. C. Pereira, M. J. McInerney, R. N. Austin, J. T. Groves, J. J. Kukor, J. M. Suflita, L. Y. Young, G. Z. Zylstra, B. Wawrik Environmental Microbiology, 2012, 14, 1010-1013. doi:10.1111/j.1462-2920.2011.02516.x

Alkane-oxidizing metalloenzymes in the carbon cycle: A Critical Review Rachel Narehood Austin and John T. Groves, Metallomics, 2011, 3(8) 775-787 DOI:10.1039/C1MT00048A.

Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer-Tropsch catalysts, I.T. Ghampson C. Newman, L. Kong E. Pier, K. D. Hurley, R. A. Pollock, B. R. Walsh, B. Goundie J. Wright, M. C. Wheeler, R. Meulenberg, W.J. DeSisto, B. G. Frederick, and R.N. Austin Applied Catalysis A 2010 388(1-2), 57-67. doi:10.1016/j.apcata.2010.08.028

Cage escape competes with geminate recombination during alkane hydroxylation by the diiron oxygenase AlkB, Rachel N. Austin, Kate Luddy, Karla Erickson, Marilla Pender-Cudlip, Erin Bertrand, Dayi Deng, Ryan S. Buzdygon, Jan B. van Beilen, John T. Groves Angew. Chemie. Int. Ed., Engl. 2008 47(28) 5232-5234

Radical intermediates in monooxygenase reactions of rieske dioxygenases Sarmistha Chakrabarty, Rachel N. Austin, Dayi Deng, John T. Groves, John D. Lipscomb, J. Am. Chem. Soc. 2007, 129, 3514-3515.

Profiling mechanisms of alkane hydroxylase activity in vivo using the diagnostic substrate norcarane Elena A. Rozhkova-Novosad, Jong-Chan Chae, Gerben J. Zylstra, Erin M. Bertrand, Marselle Alexander-Ozinskas, Dayi Deng, Luke A. Moe, Jan B. van Beilen, Michael Danahy, John T. Groves, Rachel N. Austin, Chemistry and Biology 2007 14, 165-172.

The diagnostic substrate bicyclohexane reveals a radical mechanism for bacterial Cytochrome P450 in whole cells Rachel N, Austin, Dayi Deng, Yongying Jiang, Kate Luddy, Jan B. van Beilen, Paul R. Ortiz de Montellano, John T. Groves, Angew. Chemie. Int. Ed., Engl. 2006, 45(48), 8192-8194.

Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells Erin M. Bertrand, Ryo Sakai, Elena Rozhkova-Novosad, Luke Moe, Brian G. Fox, John T. Groves, Rachel N. Austin, Journal of Inorganic Biochemistry, 2005, 99(10), 1998-2006.
Remarkable Aliphatic Hydroxylation by Diiron Enzyme Toluene 4-Monooxygenase in Reactions with Radical/Cation Diagnostic Probes Norcarane, 1,1-Dimethylcyclopropane, and 1,1-Diethylcyclopropane Luke A. Moe, Zhengbo Hu, Dayi Deng, Rachel N. Austin, John T. Groves, and Brian G. Fox, Biochemistry, 2004, 43(50), 15688-15701.

Xylene Monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate Rachel N. Austin, Kate Buzzi, Eungbin Kim, Gerben Zylstra, John T. Groves, Journal of BioInorganic Chemistry, 2003, 8, 733-740

The photodecomposition of carbaryl in the presence of silver-doped Zeolite Y and Suwannee River Natural Organic Matter Marsha Kanan, Sofian M. Kanan, Rachel Narehood Austin, Howard H. Patterson. Environmental Science and Technology, 2003, 37, 2280-2285.
Intermediate Q from soluble Methane Monooxygenase (sMMO) hydroxylates the mechanistic substrate probe norcarane: Evidence for a Stepwise Reaction Brian J. Brazeau, Rachel N. Austin, Carly Tarr, John T. Groves, John D. Lipscomb, J. Am. Chem. Soc., 2001, 123, 11831-11837.

Photoluminescence and Raman Spectroscopy as Probes to Investigate Silver and Gold Dicyanide Clusters Doped in A-Zeolite and Understand the Mechanism of the Photoassisted Degradation of Carbaryl Sofian M. Kanan, Carl P. Tripp, Rachel N. Austin, Howard H. Patterson, Journal of Physical Chemistry B, 2001, 105, 9441-9448.

Environmental Topics in the Undergraduate General and Analytical Chemistry Curriculum Thomas J. Wenzel and Rachel N. Austin, Environmental Science and Technology, 2001, 35(15) 326A-331A.

The Non-Heme Diiron Alkane Monooxygenase of Pseudomonas oleovorans (AlkB) Hydroxylates via a Substrate Radical Intermediate Rachel N. Austin, Hung-Kuang Chang, Gerben Zylstra, John T. Groves, J. Am. Chem. Soc., 2000, 122, 11747-8.

Characterization of iron(III)tetramesityl porphyrin and microperoxidase-8 in the molecular sieve MCM-41 Volker Schünemann, Alfred X. Trautwein, Ivonne M. C. M. Rietjens, Marelle G. Boersma, Cees Veeger, Dominique Mandon, Raymond Weiss, Kapil Bahl, Christopher Colapietro, Martin Piech, Rachel N. Austin, Inorganic Chemistry. 1999, 38(21), 4901-4905.

Compound I and Compound II Analogues from a Porpholactone K. Jayaraj, A. Gold, R.N. Austin, L.M. Ball, J. Terner, D. Mandon, R. Weiss, J. Fischer, A. DeCian, M. Müther, E. Bill, A.X. Trautwein. Inorganic Chemistry. 1997, 36(20), 4555-4566.

Molecular Structure of the Chloroiron (III) Derivative of the Meso-Unsubstituted, Pyrrole -substituted (2,7,12,17 Tetramethyl - 3,8,13,18 Tetramesityl) Porphyrin and the Weak Ferromagnetic Exchange Interaction in the Corresponding A1u Oxoiron (IV) Porphyrin π-Cation Radical Complex K. Ayougou, D. Mandon, J. Fischer, R. Weiss, M. Müther, E. Bill, V. Schünemann, A.X. Trautwein, J. Terner, K. Jayaraj, R.N. Austin, A. Gold. Chem. Eur. J. 1996, 2(9), 1159-1163.

Role of O-acetyltransferase in activation of oxidised metabolites of the genotoxic environmental pollutant 1-nitropyrene P.F. Roser, P. Ramachandran, R. Sangaiah, R.N. Austin, A. Gold, L.M. Ball. Mutation Research, 1996, 369, 209-220.

Influence of meso Substituents on Electronic States of Oxoferryl Porphyrin π-Cation Radicals K. Jayaraj, J. Terner, A. Gold, D.A. Roberts, R.N. Austin, D. Mandon, R. Weiss, E. Bill, A.X. Trautwein, Inorganic Chemistry, 1996, 35, 1632-1640.

Compound I and II Analogues of a Chlorin K. Jayaraj, A. Gold, R.N. Austin, D. Mandon, R. Weiss, J. Terner, E. Bill, M. Müther, A.X. Trautwein. J. Am. Chem. Soc. 1995, 117, 9079-9080.

Synthesis and Properties of Novel Substituted 4,5,6,7-tetrahydroindenes and Selected Metal Complexes Rachel N. Austin, T. Jeffrey Clark, Thomas E. Dickson, Christopher M. Kilian, Terence A. Nile, Daniel J. Schabacker. Journal of Organometallic Chemistry. 1995, 491, 11.

Spin Coupling in Distorted High-Valent Fe(IV)-Porphyrin Radical Complexes M. Müther, E. Bill, A.X. Trautwein, D. Mandon, R. Weiss, A. Gold, K. Jayaraj, R.N. Austin. Hyperfine Interactions, 1994, 91, 803-808.
Conformational Effects on the Redox Potentials of Tetraarylporphyrins Halogenated at the β-Pyrrole Positions Philippe Ochsenbein, Khajida Ayougou, Dominique Mandon, Jean Fischer, Raymond Weiss, Rachel N. Austin, Karupiah Jayaraj, Avram Gold. Angew. Chem. Int. Ed. Engl. 1994, 33, 348-350.

Oxoferryl π-Cation Radical of β-Pyrrole Octachlorinated meso-Tetramesitylporphyrin: Electronic and Structural Properties Philippe Ochsenbein, Dominique Mandon, Jean Fischer, Raymond Weiss, Rachel Austin, Karupiah Jayaraj, Avram Gold, Eckhard Bill, Alfred X. Trautwein, James Terner. Angew. Chem. Int. Ed. Engl. 1993, 32, 1437 - 1439.

β-Halogenated Porphyrins. Molecular Structures of 2,3,7,8,12,13,17,18- Octabromo - 5,10,15,20 - Tetramesityl porphyrin, Nickel(II) 2,3,7,8,12,13,17,18 - Octabromo - 5, 10, 15, 20 - Tetramesitylporphyrin and Nickel(II) 2,3,7,8,12,13,17,18 - Octabromo - 5,10,15,20 - Tetra (pentafluorophenyl) porphyrin D. Mandon, J. Fischer, R. Weiss, K. Jayaraj, R. N. Austin, A. Gold, P. S. White, O. Brigand, P. Battioni, D. Mansuy. Inorganic Chemistry, 1992, 31, 2044-2049.

Office Hours: 

by appointment

Related Web Sites: